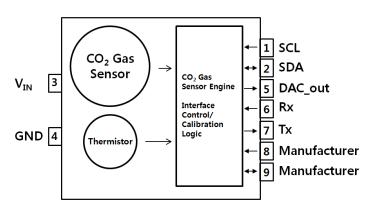
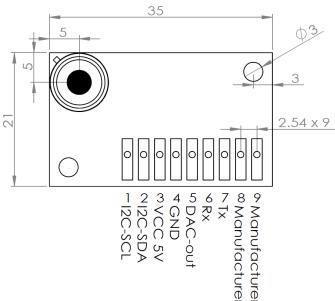
CO₂ Sensor Module - HX-105N


Features

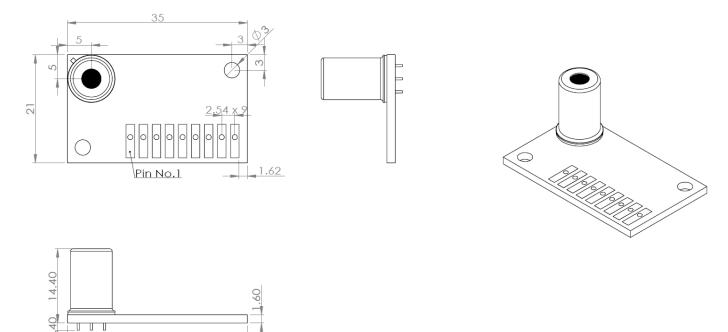

- Electrochemical type CO₂ gas sensor
- High reliability performance
- Long life time, 10 years
- Fast response time
- Compatible with 5V and various communications (I2C, UART, Vout)
- Super compact size module
- Auto calibration
- Low power consumption
- Maintenance free
- Suitable to indoor environment.
- 9 Pin module

Applications

- Indoor air quality maintenance system
 - Home net room panel
 - Air conditioner
 - Air cleaner
 - Diffuser
 - Climate control system
 - Total heat exchanger
- IOT based indoor watching system
 - Security
 - Home automation
 - Set-top box
 - Lighting

CO₂ sensor overview

Mar. 2016


Sensor & electrical performance specification ($T_a = 25$ °C)

Parameters		Condition	Symbol	Min	Min Typ Max		Unit
Gas Target gas		-	T_Gas	CO ₂			-
Data	Sensor type	-	EC		Electrochemical		
	Detection range	-	DD_R		350-6,200		ppm
	Resolution	-	D_R		1		ppm
	Accuracy	-	D _A	-10	After Starting 15 min	10	
		-	D _{A3}	-15	10 min	15	%
		-	D _{A10}	-25	3 min	25	
Time	Response	-	T_Res	2min for 90%	6 for diffusion sam	pling method	
	Warm-up	-	T_{WU}	1	3	-	min
	Life-time	-	T _{LT}		10		Years
Power	Input	-	V _{IN}	4.5	5	5.1	V
	Current Consumption	-	P _A	-	0.12	0.15	А
	Warm-up consumption	-	P _w	-	0.6	1	W
Output	Interface connections	-	O _C		UART, I2C, Vout		
	DACout -Warm up	-	Vwrm		4.7		V
	DACout - Normal Operation	Ō	Vnor	CC	0.4~4.4 02 ppm = Vnor x 10	000	V
	DACout - Alarm	-	Valm		0		V
	DACout - ppm	-	Vppm		400~4,000		ppm
	I2C-ppm	-	I2C_ppm		350~6,200		ppm
	UART-ppm		UART_ppm		350~6,200		ppm
	State	-	Stat	0:	: Normal, 1:Warm-ւ	ıp	
	Error	-	Error		0:Normal, 1:Error	·	
	Sampling interval	-	T _{SPL}		1		Hz
	Connector	-	CNT		hole, not specified s on customer's rec		
Ambient	Operating Temp	-	От	-20	25	70	°C
	Operating Humidity	No condensing	Он	0	-	95	%
	Storage Temp	-	S _T	-40	25	105	°C
	Storage Humidity	Pack in moisture proof bag	S_H	5	-	90	%
Cal	libration	-	CAL	Not reau	ired. and Self mod	e is ready	-

Mar. 2016

Module Overview

Theory of operation

35

Introduction

The CO_2 Sensor module is a gas sensor system that has been optimized for carbon dioxide. It is highly sensitive system including gas sensor and self calibration. CO_2 sensor is operated by following 3 steps.

- 1. Warm-up
- 2. Normal operating
- 3. Calibration

Warm-up

Electrochemical CO_2 sensor is consisted with micro heater and sensing material. The sensing material should be heated for 1~15 minutes to measure specific CO_2 level. About 15 minutes later, the module shows stable and correct value of CO_2 concentration.

The module consume about 0.5 W while warm-up. And after warming-up, it reduced to about 0.1W.

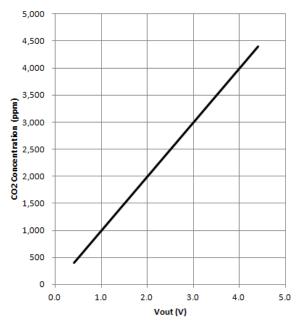
Normal operating

In continuous operation, CO_2 sensor module shows stable and linear signal by CO_2 concentration. If the module is turned off, warm-up is required again to measure CO_2 concentration after turn on.

Calibration

After applying power to the module, the measurement value may be deviated in 2 days. The deviation is related with installation environment. However, if the module is operated continuously over 2 days, the module learn about the installation environment and shows higher accuracy than specification sheet value by self calibration logic.

Mar. 2016


Terminal descriptions

Connector is not specified. It will be discussed between customer and EXSEN. Basically, connector is not attached.

Pin No.	Symbol	Description
1	SCL	Digital input, Serial clock for I2C communication
2	SDA	Digital bidirectional, Serial Address and Data
3	VCC	Supply, 5V
4	GND	Ground
5	DAC-out	Analogue output (0.4~4.4V), Failure=0V, Warm-up=4.7V
6	Rx	UART Rx
7	Тх	UART Tx
8	Manufacturer	SWCLK
9	Manufacturer	SWDIO

Communication

DAC-out

CO2 Concentration / DAC out

Vout	ppm	Vout	ppm
0	Failure	2.5	2,500
0.4	400	2.6	2,600
0.5	500	2.7	2,700
0.6	600	2.8	2,800
0.7	700	2.9	2,900
0.8	800	3.0	3,000
0.9	900	3.1	3,100
1.0	1,000	3.2	3,200
1.1	1,100	3.3	3,300
1.2	1,200	3.4	3,400
1.3	1,300	3.5	3,500
1.4	1,400	3.6	3,600
1.5	1,500	3.7	3,700
1.6	1,600	3.8	3,800
1.7	1,700	3.9	3,900
1.8	1,800	4.0	4,000
1.9	1,900	4.1	4,100
2.0	2,000	4.2	4,200
2.1	2,100	4.3	4,300
2.2	2,200	4.4	4,400
2.3	2,300	4.7	Warm-up
2.4	2,400		

Mar. 2016

I2C

output range: 350 ppm ~ 6200 ppm (Device Address: 0x23)

SCL Frequency: 200kHz

* Master, Slave

S Address(W) A Command A S Address(R) A DATA1 A Data n N	S	Address(W)	Α	Command	Α	S	Address(R)	Α	DATA1	Α	Data n	NA	Р	1
--	---	------------	---	---------	---	---	------------	---	-------	---	--------	----	---	---

General-purpose registers

Address	Data Bit	Default Value	Access	Name	Description
0xA1	[2:0]	-	RO	ACON	CO2 data (ppm)
	[3]	-	RO	STAT	0:Normal
					1:Warm up
	[4]	-	RO	ERROR	0:Normal
					1:Warm up
0xA2	[2:0]	-	RO	ACON	CO2 data (ppm)
0xA5	[0]	-	RO	STAT	0:Normal
					1:Warm up
	[1]	-	RO	ERROR	0:Normal
					1:Warm up
0x90	[0]	0	R/W	CALI	0:Auto CAL mode
					1:Manual CAL mode
					10: Manual CAL Action
					Manual CAL Sequence
					(1)Manual CAL mode> (2)Manual CAL
					Action> (3) Auto CAL mode

UART

Baud rate: 9600

date expression: # 5000 Nr Nr

	#	Space	CO2 Concentration	Space	Warm up Status	Space	Sensor Status
			(ppm)				
Data type	#		####		Wu/Nr		Er/Nr
Description	Start		Four digit		Wu: Warm up		Er: sensor is not
					Nr: Stable		working properly.
							Nr: normal status

Mar. 2016

Revision history

Rev No.	Date	Page	Details
R01	Mar 2016	ALL	Initiate HX-105N, CO ₂ sensor module specification

Notice

EXSEN Inc. (EXSEN) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact EXSEN to obtain the latest product information before placing orders or designing EXSEN products into systems.

EXSEN assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. EXSEN further makes no claim as to the suitability of its products for any particular purpose, nor does EXSEN assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

EXSEN, the EXSEN logo are registered trademarks of EXSEN.